基于Lorenz-96模型的顺序数据同化方法比较研究
期刊名称:
遥感技术与应用   2013 年 02 期
发表日期:
2013
摘要:
顺序数据同化方法在数据同化系统中得到了广泛的应用,其性能各有优缺。选择3种典型的顺序数据同化算法,即集合Kalman滤波、集合转换Kalman滤波和确定性Kalman滤波,使用经典的Lorenz-96模型进行敏感性实验,研究不同的关键参数变化,如集合数目变化、观测数变化、误差放大因子变化和定位半径变化时对同化效果的影响。实验表明:集合数目和观测数目的多少直接影响3种方法的同化效果;协方差放大因子和定位半径的选择会提高同化精度。综合比较,确定性集合Kalman滤波算法是一种具有较强鲁棒性的滤波算法,能够在集合数较小的情况下达到较好的同化效果。
相关专家
相关课题