SLSB-forest:高维数据的近似k近邻查询
钱途 钱江波 董一鸿 陈华辉 · 2017
收藏
阅读量:236
期刊名称:
电信科学   2017 年 09 期
摘要:
近似k近邻查询的研究一直受到广泛关注,局部敏感散列(LSH)是解决此问题的主流方法之一。LSH及目前大部分改进版本都会面临以下问题:数据散列以后在桶里分布不均匀;无法准确计算对应参数k的查询范围建立索引。基于此,将支持动态数据索引的LSH和B-tree结合,构建新的SLSB-forest索引结构,使散列桶里的数据维持在一个合理的区间。针对SLSB-forest提出了两种查询算法:快速查找和准确率优先查找,并通过理论和实验证明查找过程中查询范围的动态变化。
相关专家
相关课题