摘要:
提出了一种基于语言建模的文本情感分类的方法.将文本的情感倾向标记为"赞扬"或"批评",可以为文本提供主题之外的语义信息.为此提出了从训练数据中分别估计出代表"赞扬"和"批评"两种情感倾向的语言模型,然后通过比较测试文本自身的语言模型和这两种训练好的情感模型之间的Kull-back-Leibler距离,分类测试文本的思路.各个模型的参数分别选用词形特征的unigram和bigram,而相应的参数估计也分别尝试了最大似然和平滑两种策略.当在电影评论语料上和代表不同分类模型的支持向量机及朴素贝叶斯分类器进...