一种基于Ca线线指数回归的恒星大气金属丰度估计方法
期刊名称:
光谱学与光谱分析   2015 年 09 期
摘要:
提出一种基于BP神经网络及Ca线线指数估计恒星大气金属丰度的方法。该方法以从斯隆数字巡天SDSS中恒星光谱以及SSPP给出的参数作为训练样本,其中每条恒星光谱计算16个Ca线线指数,结合其他方法得到的表面有效温度Teff作为输入,以SSPP得到的金属丰度[Fe/H]作为输出,对训练样本进行重采样后通过训练得到一个人工神经网络,通过该网络可以用来预测恒星光谱的[Fe/H]。通过相关实验表明,提出的方法能够准确而且有效的测量出恒星光谱的[Fe/H]。
相关专家
相关课题