一种面向海量中文文本的典型类属关系识别方法
期刊名称:
计算机工程   2015 年 第41卷 卷 第2期 期
摘要:
传统基于文本的类属关系自动抽取算法只简单记录关系出现的位置、频次等信息,而忽略了大量上下文信息,不能有效辨识典型类属关系。为此,提出一种面向互联网文本典型类属关系的识别方法。通过提取实体概念的语言学特征和上下文语义特征构成实体特征集,基于朴素贝叶斯分类器,计算任意实体属于不同概念的可能性,从而识别典型类属关系。实验结果证明,与基于频率的识别方法相比,该方法能将典型类属关系的识别准确率提高5%以上。
相关专家
相关课题