申请入驻
会员登录
首页
专家库
成果简介
采编系统
官方活动
综合
综合
专家
记者
成果
新闻
观点
活动
检索
第一学习
智库首页
>
智库成果
>
期刊论文
基于协作表示Boosting的辐射源多传感器融合识别
周志文
黄高明
高俊
· 2017
分享
收藏
阅读量:76
辐射源识别
协作表示
多传感器数据融合
时频分析
Boosting
期刊名称:
控制与决策 2017 年 08 期
摘要:
由于单传感器辐射源识别的局限性,在低信噪比条件下仅提高单侦测平台的识别能力无法满足实际需求,为此提出基于协作表示Boosting的辐射源多传感器融合识别算法.利用多传感器数据信息的冗余性和互补性,对多处理支路采用时频分析提取特征,并由协作表示分类器求得残差.根据Boosting在训练阶段的权重组合得到最小分类残差,实现多传感器决策域的融合识别.仿真实验结果验证了所提出方法有效性,并且在低信噪比情况下噪声鲁棒性更优异,易于实现.
相关专家
相关课题