基于LTSA与K-最近邻分类器的故障诊断
姜景升 王华庆 柯燕亮 向伟 · 2017
收藏
阅读量:182
期刊名称:
振动与冲击   2017 年 11 期
摘要:
针对局部切空间排列算法(LTSA)的效果受近邻数k值影响较大的缺点,提出基于聚类准则的LTSA与K-最近邻分类器的故障诊断模型。基于振动信号的时域特征构建高维特征矩阵;对高维矩阵进行标准化预处理,依据聚类准则确定局部切空间排列中的最佳近邻数k,运用LTSA提取高维矩阵的低维特征向量;将提取的低维特征向量利用K-最近邻分类器进行故障模式识别。采用轴承诊断实验系统进行验证,结果表明,基于聚类准则的优化方法可有效地克服近邻数k选择的盲目性,提高了局部切空间的降维精度和故障模式识别正确率,其在轴承时域特征维...
相关专家
相关课题