一种鲁棒自适应容积卡尔曼滤波方法及其在相对导航中的应用
张旭
崔乃刚
王小刚
崔祜涛
秦武韬
· 2018
摘要:
针对无人机编队相对导航系统中视觉导航传感器量测噪声服从非高斯分布的问题,提出一种带噪声估计器的鲁棒自适应容积卡尔曼滤波(CKF)算法。该算法将Huber求解线性回归问题与协方差匹配方法相结合,利用残差序列实时估计,调整系统过程噪声和量测噪声的统计特性,并采用遗忘加权参数对接收到的测量数据进行加权,从而准确地估计出无人机之间的相对位置、速度和姿态信息,提高了鲁棒CKF算法的自适应能力。仿真结果表明,与标准CKF算法和鲁棒CKF算法相比,该算法对受污染的噪声统计特性有较强的自适应性,估计精度高,鲁棒性更强。