申请入驻
会员登录
首页
专家库
成果简介
采编系统
官方活动
综合
综合
专家
记者
成果
新闻
观点
活动
检索
第一学习
智库首页
>
智库成果
>
期刊论文
基于最优输运的迁移学习
车令夫
田宇坤
朱海平
张军平
· 2019
分享
收藏
阅读量:225
迁移学习
最优输运
人群计数
子流形
期刊名称:
模式识别与人工智能 2019 年 第32卷 卷 第6期 期
摘要:
迁移学习的目的是将源领域学习的信息迁移至目标领域.针对目标领域为源领域的子流形的情形,文中提出迁移学习算法(Optlearn).算法为源领域求取一组权重,期望带权的源领域和目标领域尽可能相似.采用最优输运理论,减小带权源领域和目标领域间的差异.在最优输运理论上,改进对偶Sinkhorn散度,适用于子流形情形,同时提出快速计算算法.通过人群计数任务测试文中算法,在避免对每个固定摄像头进行标注的巨大开销的同时,Optlearn获得较好的计数性能.
查看原文
相关专家
相关课题