摘要:
本发明公开了一种基于Laplacian算子的特征选择方法,所述方法既考虑到了样本和类标签之间的关联又保留了样本和样本之间的相互依赖关系。具体来说,提出的Lap-Lasso方法包含了两个正则化项,第一项是稀疏化正则化项,保证只有少数量的特征能被选择。另外,引入了一个新的基于Laplacian的正则化项,用于保留同类样本之间的局部相邻结构信息。进一步,使用APG即AcceleratedProximalGradient算法来优化所提出的模型。在UCI数据集的实验结果验证了Lap-lasso方法的有效性。